
Eur. Phys. J. A 5, 111–115 (1999) THE EUROPEAN
PHYSICAL JOURNAL A
c© Springer-Verlag 1999

The effect of hadronization on the instabilities in an expanding
parton plasma

Y.B. He1,b, J. Hüfner1, P. Zhuang2
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Abstract. The growth rate for instabilities in an expanding parton plasma is investigated by using a
quasiparticle transport model including hadronization. The coupled Boltzmann equations for partons and
pions with time dependent mean field masses and source terms are solved in the Bjorken boost invariant
picture. Hadronization modifies the known instability in the parton plasma created by the mean field in
two ways: In the beginning, hadronization increases the rate Γ of instability, but then Γ → 0 when the
hadronization is dominating the time evolution.

PACS. 25.75.-q Relativistic heavy-ion collisions – 12.38.Mh Quark-gluon plasma

Over the past several years the quasiparticle approxima-
tion has been found to be a good starting point for un-
derstanding relativistic heavy ion collisions and the re-
lated quark-gluon plasma (QGP) physics. For tempera-
tures beyond the critical value Tc of the phase transition
from a hadron gas to QGP, the equation of state obtained
from lattice simulations [1] of quantum chromodynamics
(QCD) can be reproduced by another system of noninter-
acting quasiparticles with an effective mass and a dynam-
ical mean field potential which represents the remaining
interactions which are not included in the effective mass
[2–4]. Since the nonequilibrium effects play a crucial role
in the evolution of a QGP produced in high energy nuclear
collisions, the quasiparticle description of the lattice ther-
modynamics has been extended to investigating the par-
ton plasma at nonequilibrium [5]. A transport model with
a phase transition has recently been also discussed based
on a Boltzmann equation at hadronic level [6]. Including
the hadronization in the evolution of QGP is generally a
non-trivial problem, yet it is an essential ingredient. In
this letter we study how the hadronization affects the sta-
bility of an expanding parton plasma. We work in the
framework of a quasiparticle transport model and treat
hadronization in a phenomenological model. The aim is
to get some qualitative insight into the role of hadroniza-
tion.

Many authors have analysed the instability of nuclear
matter [7–10] and quark plasma [11] in the linear response
method. Recently the quasiparticle model [5], phenomeno-
logically adjusted to the lattice data in equilibrium and
therefore with correct deconfinement properties, has been
used to study the spinodal and dynamical instabilities [12]

of an expanding parton plasma. The spinodal instabilities
related to a first-order phase transition are found to be
rather slow, while the dynamical ones related to the rapid
expansion are the dominant ones. These dynamical insta-
bilities do not appear for the Nambu–Jona-Lasinio (NJL)
model [13] even though it contains the mechanism of a
first-order chiral phase transition. So the dynamical in-
stabilities reflect confinement. Until now hadronization is
not yet introduced into the discussion of instability. In
the following we will first incorporate hadronization into
transport model, and then analytically solve the trans-
port equations in a longitudinally boost invariant expan-
sion. We pay particular attention to the influence of the
hadronization on the growth rate for instability.

To construct a quasiparticle transport model with co-
incides with the equation of state from lattice data in the
thermodynamic limit, we assume that the quasiparticle
masses and the mean field potential depend on temper-
ature. Our quasiparticle system is assumed to consist of
partons (with no distinction for quarks and gluons) and
pions. The total pressure

P (mp,mπ, T ) = Pp(mp, T ) + Pπ(mπ, T )
−V (mp,mπ) , (1)

contains the partial pressures

Pp(mp, T ) = gp

∫
d3p

(2π)3

p2

3Ep
fp(mp, T,p) ,

Pπ(mπ, T ) = gπ

∫
d3p

(2π)3

p2

3Eπ
fπ(mπ, T,p) , (2)
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and the mean field potential V which is assumed to be
a function of the quasiparticle masses mp and mπ only.
Effective QCD models like Friedberg-Lee [14] and NJL
[13] in their quasiparticle limit lead to the same coupled
system of (1) and (2), but give specific forms for V . In this
letter we follow [5,12] and determine V from lattice data.
In (2) T is the temperature of the plasma, gp and gπ are

degeneracies of partons and pions, and Ep =
√
m2
p + p2

and Eπ =
√
m2
π + p2 are quasiparticle energies. Since the

lattice simulation at finite baryon density is still poor,
we do not consider the chemical potential dependence of
the quasiparticle distributions. We neglect the difference
between Bosons and Fermions by assuming distributions
fp and fπ in equilibrium to be Boltzmann functions

feqp/π(Ep/π/T ) = e−Ep/π/T . (3)

The masses mp and mπ in the heat bath and the po-
tential are not independent parameters in the model. They
satisfy the so-called gap equations derived from the mini-
mum property of the thermodynamic potential Ω = −P ,

∂V

∂mp
|mπ + gp

∫
d3p

(2π)3

mp

Ep
fp(mp, T ) = 0 ,

∂V

∂mπ
|mp + gπ

∫
d3p

(2π)3

mπ

Eπ
fπ(mπ, T ) = 0 . (4)

Using standard methods of thermodynamics one de-
rives the total energy density of the system

ε(mp,mπ, T ) = εp(mp, T ) + επ(mπ, T ) + V (mp,mπ) (5)

with the quasi-particle energy densities given by

εp(mp, T ) = gp

∫
d3p

(2π)3
Epfp(mp, T ) ,

επ(mπ, T ) = gπ

∫
d3p

(2π)3
Eπfπ(mπ, T ) . (6)

The screening and dynamical masses for pions calcu-
lated on the lattice [15] are rather smooth over a large
temperature region compared with the very steep change
of the parton mass around the critical point of deconfine-
ment phase transition. Therefore the temperature depen-
dence, or in nonequilibrium the space-time dependence, of
the pion mass will be left out. By substituting the constant
pion mass mπ = 140MeV into the pion energy density in
(6), the dependence of the parton mass mp(T ) and the
dynamical potential V (mp(T )) can be fixed from the re-
quirement

ε(mp(T ),mπ, T ) = εlat(T ) (7)

and the gap (4) for partons, where εlat(T ) is the lattice
energy density. The details of the determination of the
parton mass and potential are similar to that in [5]. Cor-
responding to the lattice data [1] for 4 flavors, the nonin-
teracting limit of QCD with 4 massless flavors yields the
parton degeneracy gp = 62.8.

After the equation of state of the quasiparticle model
is fixed by knowing mp(T ) we turn now to the exten-
sion of the model to the nonequilibrium case and de-
scribe the expanding parton plasma and the hadroniza-
tion process. Under the assumption that for a given sys-
tem the dynamics in nonequilibrium should be the same
as that in equilibrium, one retains the gap (4) but replaces
mp(T ) and fp(p, T ) by mp(x) and fp(x,p) with x = (x, t).
Then mp(x) can be calculated from fp(x,p) via (4). The
distribution functions fp/π(x,p) for the density of par-
tons/pions of momentum p at point x, t are governed by
two Boltzmann kinetic equations,(

∂t +
1
Ep

p · ∇ − mp

Ep
∇mp · ∇p

)
fp(x,p) = −Ip ,(

∂t +
1
Eπ

p · ∇ − mπ

Eπ
∇mπ · ∇p

)
fπ(x,p) = Iπ , (8)

where Ip and Iπ on the right-hand sides are respectively
loss and gain terms for the partons and pions associated
with the hadronization process (we neglect thermaliza-
tion processes). The above transport equations together
with the parton gap equation determine simultaneously
the space-time dependent distributions and the parton
mass.

From the energy conservation in collisions, the parton
and pion source terms obey the constraint

gp

∫
d3p

(2π)3
EpIp − gπ

∫
d3p

(2π)3
EπIπ = 0 . (9)

The calculation of the hadronization rate within QCD
is still not solved satisfactorily due to the non-perturbative
nature. Up to now most studies of hadronization use
phenomenological methods, for instance, the evaporation
mechanism [16], Schwinger mechanism [17] of pair produc-
tion, flux tube model [18], string fragmentation ( [19]),
cluster formation mechanisms ( [20]) and effective La-
grangians [21]. As emphasised in the introduction, we fo-
cus our attention in this letter on the influence of the
hadronization on the instabilities of the nonequilibrium
parton plasma. Therefore we also employ a schematic
model. We take here the relaxation time approximation
and put all the hadronization properties into the two re-
laxation times θp and θπ,

Ip =
1
θp
fp, Iπ =

1
θπ
fπ . (10)

In this way we can only discuss the transition from par-
tons to pions, but not the back reaction. This is appro-
priate only for the expanding phase of the plasma. The
characteristic scale θ for the hadronization is a few fm/c.
The hadronization time θp for the transition of partons
into mesons depends on the status of the system – there
is no hadronization above the phase transition, and it be-
comes maximum at the phase transition. In the quasipar-
ticle model, the state of the system reflects itself in the
value for the effective mass. Therefore we make the fol-
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lowing phenomenological ansatz for the relaxation time,

1
θp

=
1
λ

1
2

(
1 + tanh

mp −mc
p

∆mp

)
, (11)

where the space-time dependence of the hadronization is
hidden in the mass dependence of the relaxation time.
In our numerical calculation the time scale λ is taken as
1 fm/c, see [19]. The centre value mc

p = 270MeV is larger
than the pion mass and thus satisfies the necessary mass
condition for the hadronization. We choose ∆mp = mc

p/5.
While there are good reasons for the value of λ, values for
mc
p and ∆mc

p can only be termed reasonably. In the re-
laxation time approximation energy conservation (9) gives
the pion relaxation time in terms of the parton relaxation
time,

θπ =
επ
εp
θp . (12)

The stability analysis of the coupled system of Boltz-
mann and gap equations proceeds as follows: We seek
analytical solutions fp(x,p), fπ(x,p) of these equations
which describe an expanding system and analyse the re-
sponse of the system to perturbations δfp and δfπ. For the
analytical solution we use Bjorken’s boost invariant pic-
ture [22] which is valid in the central region of relativistic
heavy ion collisions where a plateau structure may exist
for the final rapidity distribution. Introducing the proper
time τ =

√
t2 − z2 and space-time rapidity η = 1

2 ln t+z
t−z

instead of the time t and longitudinal coordinate z, and
assuming that the effective parton mass and the quasi-
particle densities in coordinate space (the integration of
the phase-space distributions over momentum) depend on
the proper time only, the transport (8) in the absence of
the source terms have a scaling solution [23] f(s, p⊥) with
s = τ

τ0
m⊥| sinh(Y − η)|, the initial proper time τ0, the

transverse mass m⊥(τ) =
√
m2(τ) + p2, and the parti-

cle rapidity Y = 1
2 ln E+pz

E−Pz . Transverse expansion is ne-
glected. In order to fix the form of f we assume that at
τ = τ0 the system is in thermal equilibrium, i. e. given
by (3). In the local rest frame which corresponds to the
central slice of a relativistic heavy ion collision, η = 0
and m⊥ sinhY = pz. Including the hadronization, the so-
lutions of (8) in the local rest frame are just the above
scaling solutions multiplied by a factor due to hadroniza-
tion,

fp(τ,p) = e
−
∫ τ
τ0

1
θp(τ′)dτ

′
feqp

(
Ẽp
T

)
,

fπ(τ,p) = e
∫ τ
τ0

1
θπ(τ′)dτ

′
feqπ

(
Ẽπ
T

)
, (13)

with Ẽp/π =
√

( ττ0 pz)
2 + p2

⊥ +m2
p/π(τ0).

Substituting the scaling solution (13) into the gap
equation for quarks and remembering that the dynam-
ical potential V in nonequilibrium is the same as that
extracted from the lattice data in equilibrium, we obtain
in the local rest frame the time dependence of the parton
mass shown in Fig.1a. In the numerical calculation the ini-
tial time and initial temperature are chosen as τ0 = 1fm

Fig. 1. The time evolution of the parton mass (a), energy
ratio (b) and instability growth rate (c) at wave number kz =
1/fm for the cases with mean field only (dashed lines) and
with hadronization (solid lines)

and T = 270MeV . As expected the quasiparticle mass
increases with expansion time.

The evolution of the hadronization in the parton
plasma can be read from the ratio of the parton energy
density to the total energy density,

r(τ) =
εp(τ)
εtot(τ)

=
εp(τ)

εp(τ) + επ(τ) + V (τ)
, (14)

with the numerical result given in Fig.1b. At the begin-
ning of the evolution, the system is controlled by the ex-
pansion and the pion contribution is very small. The slight
decrease of the ratio is due to the almost constant poten-
tial. When the mass mp(τ) approaches the value mc

p in
(11), hadronization becomes the dominating effect. This
happens around τ = 7fm/c.

Let us now study the onset of instability associated
with the deconfinement phase transition in the expanding
parton plasma. In the spirit of linear response theory, we
consider a perturbation δfp around the scaling solution f
and study its time dependence. From the Boltzmann equa-
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tion and the gap equation for the partons, the deviations
δfp(x,p) and δmp(x) around the zeroth-order distribution
fp(x,p) and effective parton mass mp(x) are characterised
by the linear equations

∂tδfp + vp · ∇δfp −
mp

Ep
∇δmp · ∇pfp = −δIp ,(

∂2V

∂m2
p

+ gp

∫
d3p

(2π)3

p2

E3
p

fp

)
δmp

+gp
∫

d3p
(2π)3

mp

Ep
δfp = 0 (15)

Here vp = p/Ep is the parton velocity in the plasma, and
δIp is the fluctuation of the loss term,

δIp =
∂

mp
(

1
θp

)fpδmp +
1
θp
δfp . (16)

In the derivation of the above linear equations we have
considered the often used adiabatic approximation in the
linear response analysis, namely that compared with the
expected strong space-time variation of the fluctuations
δfp and δmp, the space-time dependence of the zeroth-
order quantities fp and mp can be neglected. This approx-
imation may be questionable for too fast hadronization.

After a Fourier transform of the linear equations with
respect to the perturbations we derive the linear response
equation for the wave number k and frequency ω of the
plane waves in our infinite parton plasma,[

∂2V

∂m2
p

+ gp

∫
d3p

(2π)3

(
p2

E3
p

fp +
mp

Ep

mp

Ep
k · ∇fp

+
ifp

∂
∂mp

( 1
θp

)

k · vp − ω − i/θp

)]
δmp(ω,k) = 0 . (17)

Since we have assumed mπ to be constant, δmπ = 0 and
the fluctuation of the pion distribution in the plasma is a
consequence of the parton disturbance. This can be seen
clearly from the equation

δfπ(ω,k,p) =
i ∂
∂mp

( 1
θπ

)fπ
ω − k · vπ − i/θπ

δmp(ω,k,p) . (18)

The fluctuation can propagate in the plasma only if δmp 6=
0, hence the response equation which gives the relation
between the frequency and the wave number is the zero of
the square bracket in (17). Inserting fp from (13) and let
k = (0, 0, kz) (perturbation in longitudinal direction) one
has ∫ ∞

0

dp⊥p⊥

∫ ∞
−∞

dpz
ḟeqp

EpẼp

×
[kzvz + i

TẼp
mp

(
τ0
τ

)2 ∂
∂mp

(
1
θp

)
feqp
ḟeqp

kzvz − ω − i/θp

− dτ

dmp

(
p2
z

mpτ
− 1
θp

(τ0
τ

)2 TẼp
mp

feqp

ḟeqp

)]
= 0, (19)

where ḟeqp indicates the derivative of the equilibrium dis-

tribution with respect to the variable Ẽp
T . The linear dis-

persion relation in the transverse direction is similar to
(19), and the corresponding growth rate is smaller.

Unstable modes are characterised by the imaginary so-
lution of the linear equation (19), ω = iΓ . They grow like
eΓt. In the absence of hadronization, 1/θp = 0, the frac-
tion containing ω can be divided through by kz and ω/kz
is the unknown quantity, which leads to Γ ∝ kz for the
instability rate. This case is discussed in [12], and the in-
stability growth rate, called Γmf , is shown by the dashed
curve in Fig.1c. The system is stable in the early stage of
the evolution, but then the instability increases rapidly.
With hadronization, θp appears at three places in (19). In
the denominator, ω = iΓ is changed to ω = i(Γ + 1/θp).
From the two other terms, the one in the numerator is
more important than the one in the round brackets. We
decompose the total growth rate Γ into three parts, the
mean-field part, Γmf , a correction δΓhd and the inverse of
the relaxation time,

Γ = Γmf + δΓhd −
1
θp

. (20)

The time evolution of the total instability growth rate
is indicated by the solid curve in Fig.1c. The small
hadronization rate at the early stage does not change the
stability of the parton plasma. When hadronization be-
comes important, first δΓhd > 0 and it increases the in-
stability rate by nearly a factor two, until finally, the last
term in (20) dominates: the growth rate of the instability
is over-compensated by the depletion of the density by the
overall hadronization.

We want to explain the behaviour of Γ under the in-
fluence of the mean field and of hadronization in simple
physical terms (Fig.2). We assume a homogeneous density
ρ = constant as a zeroth order solution and a fluctuation
δρ, which is negative in the picture. Via the gap equation,
a reduced density leads to an increased mass δm > 0.
Since the Newtonian equation for the quasiparticle model
is ṗ = −∇E,E2 = p2 + m2(x, t), a modification in the
mass δm > 0 leads to δE > 0 and particles will flow
away from the edges of the perturbation where the gra-
dient is largest. Therefore δρ will become more negative
and we have an instable situation. Since the flow is pro-
portional to ∇δE ∝ ∇δm, the width for the growth rate is
inversely proportional to the size of the perturbation,i. e.
Γmf ∝ kz. The hadronization rate 1/θp(mp) is a monoton-
ically increasing function of the mass. Therefore δm > 0
leads to an increased hadronization rate, as shown in the
lowest picture of Fig.2. In our model the hadronization is
a volume effect ( proportional to mp and not to ∇mp) and
therefore δΓhd is not proportional to kz. If one starts with
a positive perturbation δρ > 0, one goes though the argu-
ments and finds that δρ increases. The result of the com-
petition between the two self-generating mechanisms and
the absorption term 1/θp is reflected in the steep growth
and then the fast dropping down of the total growth rate
Γ in Fig.1c. For the pions, no self-consistency is obtained
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Fig. 2. A schematic picture of the two mechanisms which lead
to the self-accelerating growth rate of the instability. From top
to bottom: A negative fluctuation of the density, leads to a
positive fluctuation of the mass, which generates a “hill” in
the total local energy from which the quasiparticles flow away.
Finally, an increased mass leads to faster hadronization, again
reducing the density

since δmπ = 0. Any fluctuation δfπ is proportional to δmp

and follows the fluctuations of the partons.
In summary, we have investigated the importance of

the hadronization on the evolution of the instabilities in an
expanding parton plasma by solving the Boltzmann equa-
tions with source terms. We have shown that the inclusion
of the hadronization effect in the mean-field propagation
changes significantly the parton dispersion relation. The
unstable modes are corrected by hadronization in two as-
pects: The transition from partons to pions enhances the
instability first, but finally the instability is fully eaten
up by the hadronization. While the model contains all
essential aspects of QCD phase transition, confinement,
chirality and hadronization, and further more the Bjorken
scenario for the space time development, the details of

the model, quasiparticle approach, no thermalization and
a rather schematic expression for the hadronization rate
are open for improvement. Yet, qualitatively, the conclu-
sions of the calculation are sound: Hadronization plays a
significant role in any understanding of instabilities.
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